3,237 research outputs found

    Multicomponent Diffusion in Nanosystems

    Full text link
    We present the detailed analysis of the diffusive transport of spatially inhomogeneous fluid mixtures and the interplay between structural and dynamical properties varying on the atomic scale. The present treatment is based on different areas of liquid state theory, namely kinetic and density functional theory and their implementation as an effective numerical method via the Lattice Boltzmann approach. By combining the first two methods it is possible to obtain a closed set of kinetic equations for the singlet phase space distribution functions of each species. The interactions among particles are considered within a self-consistent approximation and the resulting effective molecular fields are analyzed. We focus on multispecies diffusion in systems with short-range hard-core repulsion between particles of unequal sizes and weak attractive long-range interactions. As a result, the attractive part of the potential does not contribute explicitly to viscosity but to diffusivity and the thermodynamic properties. Finally, we obtain a practical scheme to solve the kinetic equations by employing a discretization procedure derived from the Lattice Boltzmann approach. Within this framework, we present numerical data concerning the mutual diffusion properties both in the case of a quiescent bulk fluid and shear flow inducing Taylor dispersion.Comment: 19 pages + 5 figure

    Kinetic Density Functional Theory: A microscopic approach to fluid mechanics

    Full text link
    In the present paper we give a brief summary of some recent theoretical advances in the treatment of inhomogeneous fluids and methods which have applications in the study of dynamical properties of liquids in situations of extreme confinement, such as nanopores, nanodevices, etc. The approach obtained by combining kinetic and density functional methods is microscopic, fully self-consistent and allows to determine both configurational and flow properties of dense fluids. The theory predicts the correct hydrodynamic behavior and provides a practical and numerical tool to determine how the transport properties are modified when the length scales of the confining channels are comparable with the size of the molecules. The applications range from the dynamics of simple fluids under confinement, to that of neutral binary mixtures and electrolytes where the theory in the limit of slow gradients reproduces the known phenomenological equations such as the Planck-Nernst-Poisson and the Smoluchowski equations. The approach here illustrated allows for fast numerical solution of the evolution equations for the one-particle phase-space distributions by means of the weighted density lattice Boltzmann method and is particularly useful when one considers flows in complex geometries.Comment: 14 page

    Dynamic density functional theory versus Kinetic theory of simple fluids

    Full text link
    By combining methods of kinetic and density functional theory, we present a description of molecular fluids which accounts for their microscopic structure and thermodynamic properties as well as for the hydrodynamic behavior. We focus on the evolution of the one particle phase space distribution, rather than on the evolution of the average particle density, which features in dynamic density functional theory. The resulting equation can be studied in two different physical limits: diffusive dynamics, typical of colloidal fluids without hydrodynamic interaction, where particles are subject to overdamped motion resulting from the coupling with a solvent at rest, and inertial dynamics, typical of molecular fluids. Finally, we propose an algorithm to solve numerically and efficiently the resulting kinetic equation by employing a discretization procedure analogous to the one used in the Lattice Boltzmann method.Comment: 15 page

    Electro-osmotic flow in coated nanocapillaries: a theoretical investigation

    Full text link
    Motivated by recent experiments, we present a theoretical investigation of how the electro-osmotic flow occurring in a capillary is modified when its charged surfaces are coated by charged polymers. The theoretical treatment is based on a three dimensional model consisting of a ternary fluid-mixture, representing the solvent and two species for the ions, confined between two parallel charged plates decorated by a fixed array of scatterers representing the polymer coating. The electro-osmotic flow, generated by a constant electric field applied in a direction parallel to the plates, is studied numerically by means of Lattice Boltzmann simulations. In order to gain further understanding we performed a simple theoretical analysis by extending the Stokes-Smoluchowski equation to take into account the porosity induced by the polymers in the region adjacent the walls. We discuss the nature of the velocity profiles by focusing on the competing effects of the polymer charges and the frictional forces they exert. We show evidence of the flow reduction and of the flow inversion phenomenon when the polymer charge is opposite to the surface charge. By using the density of polymers and the surface charge as control variables, we propose a phase diagram that discriminates the direct and the reversed flow regimes and determine its dependence on the ionic concentration.Comment: 15 pages, 6 figures in Physical Chemistry Chemical Physics, 201

    Steric modulation of ionic currents in DNA translocation through nanopores

    Full text link
    Ionic currents accompanying DNA translocation strongly depend on molarity of the electrolyte solution and the shape and surface charge of the nanopore. By means of the Poisson-Nernst-Planck equations it is shown how conductance is modulated by the presence of the DNA intruder and as a result of competing electrostatic and confinement factors. The theoretical results reproduce quantitatively the experimental ones and are summarized in a conductance diagram that allows distinguishing the region of reduced conductivity from the region of enhanced conductivity as a function of molarity and the pore dimension.Comment: 22 pages, 7 figure

    Pressure and surface tension of an active simple liquid: a comparison between kinetic, mechanical and free-energy based approaches

    Full text link
    We discuss different definitions of pressure for a system of active spherical particles driven by a non-thermal coloured noise. We show that mechanical, kinetic and free-energy based approaches lead to the same result up to first order in the non-equilibrium expansion parameter. The first prescription is based on a generalisation of the kinetic mesoscopic virial equation and expresses the pressure exerted on the walls in terms of the average of the virial of the inter-particle forces. In the second approach, the pressure and the surface tension are identified with the volume and area derivatives, respectively, of the partition function associated with the known stationary non-equilibrium distribution of the model. The third method is a mechanical approach and is related to the work necessary to deform the system. The pressure is obtained by comparing the expression of the work in terms of local stress and strain with the corresponding expression in terms of microscopic distribution. This is determined from the force balance encoded in the Born-Green-Yvon equation. Such a method has the advantage of giving a formula for the local pressure tensor and the surface tension even in inhomogeneous situations. By direct inspection, we show that the three procedures lead to the same values of the pressure, and give support to the idea that the partition function, obtained via the unified coloured noise approximation, is more than a formal property of the system, but determines the stationary non-equilibrium thermodynamics of the model

    Methods for Common Subgraph Approximation

    Get PDF
    No abstract availabl

    Electrokinetic Lattice Boltzmann solver coupled to Molecular Dynamics: application to polymer translocation

    Full text link
    We develop a theoretical and computational approach to deal with systems that involve a disparate range of spatio-temporal scales, such as those comprised of colloidal particles or polymers moving in a fluidic molecular environment. Our approach is based on a multiscale modeling that combines the slow dynamics of the large particles with the fast dynamics of the solvent into a unique framework. The former is numerically solved via Molecular Dynamics and the latter via a multi-component Lattice Boltzmann. The two techniques are coupled together to allow for a seamless exchange of information between the descriptions. Being based on a kinetic multi-component description of the fluid species, the scheme is flexible in modeling charge flow within complex geometries and ranging from large to vanishing salt concentration. The details of the scheme are presented and the method is applied to the problem of translocation of a charged polymer through a nanopores. In the end, we discuss the advantages and complexities of the approach

    3D Object Comparison Based on Shape Descriptors

    Get PDF
    No abstract availabl
    • …
    corecore